Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Macromol Rapid Commun ; : e2400041, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366845

RESUMO

Ionic thermoelectrics (TEs), in which voltage generation is based on ion migration, are suitable for applications based on their low cost, high flexibility, high ionic conductivity, and wide range of Seebeck coefficients. This work reports on the development of ionic TE materials based on the poly(vinylidene fluoride-trifluoroethylene), Poly(VDF-co-TrFE), as host polymer blended with different contents of the ionic liquid, IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The morphology, physico-chemical, thermal, mechanical, and electrical properties of the samples are evaluated together with the TE response. It is demonstrated that the IL acts as a nucleating agent for polymer crystallization. The mechanical properties and ionic conductivity values are dependent on the IL content. A high room temperature ionic conductivity of 0.008 S cm-1 is obtained for the sample with 60 wt% of [EMIM][TFSI] IL. The TE properties depend on both IL content and device topology-vertical or planar-the largest generated voltage range being obtained for the planar topology and the sample with 10 wt% of IL content, characterized by a Seebeck coefficient of 1.2 mV K-1 . Based on the obtained maximum power density of 4.9 µW m-2 , these materials are suitable for a new generation of TE devices.

2.
Int J Biol Macromol ; 256(Pt 2): 128486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042312

RESUMO

With the aim of replacing synthetic macromolecules by biological macromolecules for advanced applications, collagen films were produced with two different ionic liquids (ILs), choline dihydrogen phosphate ([Ch][DHP]) and choline serinate ([Ch][Seri]), added in order to modulate the electrical responses. The films were prepared by casting, varying IL content between 0 and 6 wt%. The morphology and thermal properties of the resulting films were found to be independent of both IL type and content. However, the highest direct curret (d.c.) electrical conductivity (1.4 × 10-8 S·cm-1) was achieved for collagen films containing 3 wt% [Ch][DHP]. Furthermore, it was demonstrated that IL/collagen films were non-cytotoxic, with cell activity values exceeding 70 %. These collagen films were proven to be suitable for force sensing applications, displaying excellent sensitivity and stability upon repeated testing.


Assuntos
Materiais Biocompatíveis , Líquidos Iônicos , Materiais Biocompatíveis/farmacologia , Colágeno , Colina , Fosforilcolina
3.
Adv Mater ; 36(4): e2308590, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050893

RESUMO

Li-metal and silicon are potential anode materials in all-solid-state Li-ion batteries (ASSBs) due to high specific capacity. However, both materials form gaps at the interface with solid electrolytes (SEs) during charging/discharging, resulting in increased impedance and uneven current density distribution. In this perspective, the different mechanisms of formation of these gaps are elaborated in detail. For Li-metal anodes, Li-ions are repeatedly stripped and unevenly deposited on the surface, leading to gaps and Li dendrite formation, which is an unavoidable electrochemical behavior. For Si-based anodes, Li-ions inserting/extracting within the Si-based electrode causes volume changes and a local separation from the SE, which is a mechanical behavior and avoidable by mitigating the strain mismatch of thin-film bonding between anode and SE. Si electro-chemical-mechanical behaviors are also described and strategies recommended to synergistically decrease Si-based electrode strain, including Si materials, Si-based composites, and electrodes. Last, it is suggested to choose a composite polymer-inorganic SE with favorable elastic properties and high ionic conductivity and form it directly on the Si-based electrode, beneficial for increasing SE strain to accommodate stack pressure and the stability of the interface. Thus, this perspective sheds light on the development and application of Si-based ASSBs.

4.
Polymers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835904

RESUMO

This work reports on the development of collagen films with graphene oxide nanoparticles (GO NPs), aiming toward the development of a new generation of functional sustainable sensors. For this purpose, different GO NP contents up to 3 wt % were incorporated into a collagen matrix, and morphological, thermal, mechanical and electrical properties were evaluated. Independently of the GO NP content, all films display an increase in thermal stability as a result of the increase in the structural order of collagen, as revealed by XRD analysis. Further, the inclusion of GO NPs into collagen promotes an increase in the intensity of oxygen characteristic absorption bands in FTIR spectra, due to the abundant oxygen-containing functional groups, which lead to an increase in the hydrophilic character of the surface. GO NPs also influence the mechanical properties of the composites, increasing the tensile strength from 33.2 ± 2.4 MPa (collagen) to 44.1 ± 1.0 MPa (collagen with 3 wt % GO NPs). Finally, the electrical conductivity also increases slightly with GO NP content, allowing the development of resistive bending sensors.

5.
ACS Appl Polym Mater ; 5(9): 7144-7154, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705715

RESUMO

Flexible and conformable conductive composites have been developed using different polymers, including water-based polyvinylpyrrolidone (PVP), chemical-resistant polyvinylidene fluoride (PVDF), and elastomeric styrene-ethylene-butylene-styrene (SEBS) reinforced with nitrogen-doped reduced graphene oxide with suitable viscosity in composites for printable solutions with functional properties. Manufactured by screen-printing using low-toxicity solvents, leading to more environmentally friendly conductive materials, the materials present an enormous step toward functional devices. The materials were enhanced in terms of filler/binder ratio, achieving screen-printed films with a sheet resistance lower than Rsq < 100 Ω/sq. The materials are biocompatible and support bending deformations up to 10 mm with piezoresistive performance for the different polymers up to 100 bending cycles. The piezoresistive performance of the SEBS binder is greater than double that the other composites, with a gauge factor near 4. Thermoforming was applied to all materials, with the PVP-based ones showing the lowest electrical resistance after the bending process. These conductive materials open a path for developing sustainable and functional devices for printable and conformable electronics.

6.
Chem Rev ; 123(19): 11392-11487, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37729110

RESUMO

From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.

7.
ACS Appl Electron Mater ; 5(6): 3426-3435, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396056

RESUMO

A multifunctional polymer-based composite has been designed based on poly(vinylidene fluoride) (PVDF) as polymer matrix and cobalt ferrite (CoFe2O4, CFO) and multiwalled carbon nanotubes (MWCNTs) as fillers, allowing to combine magnetic and electrical responses. The composites were prepared by solvent casting with a fixed 20 wt % concentration of CFO and varying the MWCNTs content between 0 and 3 wt %, allowing to tailor the electrical behavior. The morphology, polymer phase, and thermal and magnetic properties are nearly independent of the MWCNT filler content within the polymer matrix. On the other hand, the mechanical and electrical properties strongly depend on the MWCNT content and a maximum d.c. electrical conductivity value of 4 × 10-4 S·cm-1 has been obtained for the 20 wt %CFO-3 wt %MWCNT/PVDF sample, which is accompanied by an 11.1 emu·g-1 magnetization. The suitability of this composite for magnetic actuators with self-sensing strain characteristics is demonstrated with excellent response and reproducibility.

8.
ACS Appl Mater Interfaces ; 15(27): 32301-32312, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379238

RESUMO

Renewable energy sources require efficient energy storage systems. Lithium-ion batteries stand out among those systems, but safety and cycling stability problems still need to be improved. This can be achieved by the implementation of solid polymer electrolytes (SPE) instead of the typically used separator/electrolyte system. Thus, ternary SPEs have been developed based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene), P(VDF-TrFE-CFE) as host polymers, clinoptilolite (CPT) zeolite added to stabilize the battery cycling performance, and ionic liquids (ILs) (1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN])), 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([PMPyr][TFSI]) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), incorporated to increase the ionic conductivity. The samples were processed by doctor blade with solvent evaporation at 160 °C. The nature of the polymer matrix and fillers affect the morphology and mechanical properties of the samples and play an important role in electrochemical parameters such as ionic conductivity value, electrochemical window stability, and lithium-transference number. The best ionic conductivity (4.2 × 10-5 S cm-1) and lithium transference number (0.59) were obtained for the PVDF-HFP-CPT-[PMPyr][TFSI] sample. Charge-discharge battery tests at C/10 showed excellent battery performance with values of 150 mAh g-1 after 50 cycles, regardless of the polymer matrix and IL used. In the rate performance tests, the best SPE was the one based on the P(VDF-TrFE-CFE) host polymer, with a discharge value at C-rate of 98.7 mAh g-1, as it promoted ionic dissociation. This study proves for the first time the suitability of P(VDF-TrFE-CFE) as SPE in lithium-ion batteries, showing the relevance of the proper selection of the polymer matrix, IL type, and lithium salt in the formulation of the ternary SPE, in order to optimize solid-state battery performance. In particular, the enhancement of the ionic conductivity provided by the IL and the effect of the high dielectric constant polymer P(VDF-TrFE-CFE) in improving battery cyclability in a wide range of discharge rates must be highlighted.

9.
J Phys Chem C Nanomater Interfaces ; 127(22): 10480-10487, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37313120

RESUMO

The influence of the inclusion of the organic solvent propylene carbonate (PC) in microporous membranes based on poly(l-lactic acid) (PLLA) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP) has been studied based on its relevance for the application of those separator membranes in lithium-ion batteries. The membranes have been produced through solvent casting and characterized with respect to the swelling ratio originated by the uptake of the organic solvent. The organic solvent uptake affects the porous microstructure and crystalline phase of both membrane types. The organic solvent uptake amount affects the crystal size of the membranes as a consequence of the interaction between the solvent and the polymer, since the presence of the solvent modifies the melting process of the polymer crystals due to a freezing temperature depression effect. It is also shown that the organic solvent partially penetrates into the amorphous phase of the polymer, leading to a mechanical plasticizing effect. Thus, the interaction between the organic solvent and the porous membrane is essential to properly tailor membrane properties, which in turn will affect lithium-ion battery performance.

10.
ACS Appl Energy Mater ; 6(10): 5239-5248, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234969

RESUMO

Solid polymer electrolytes (SPEs) will allow improving safety and durability in next-generation solid-state lithium-ion batteries (LIBs). Within the SPE class, ternary composites are a suitable approach as they provide high room-temperature ionic conductivity and excellent cycling and electrochemical stability. In this work, ternary SPEs based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by solvent evaporation at different temperatures (room temperature, 80, 120, and 160 °C). Solvent evaporation temperature affects the morphology, degree of crystallinity, and mechanical properties of the samples as well as the ionic conductivity and lithium transference number. The highest ionic conductivity (1.2 × 10-4 S·cm-1) and lithium transference number (0.66) have been obtained for the SPE prepared at room temperature and 160 °C, respectively. Charge-discharge battery tests show the highest value of discharge capacity of 149 and 136 mAh·g-1 at C/10 and C/2 rates, respectively, for the SPE prepared at 160 °C. We conclude that the fine control of the solvent evaporation temperature during the preparation of the SPE allows us to optimize solid-state battery performance.

11.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177514

RESUMO

Machine vision systems are widely used in assembly lines for providing sensing abilities to robots to allow them to handle dynamic environments. This paper presents a comparison of 3D sensors for evaluating which one is best suited for usage in a machine vision system for robotic fastening operations within an automotive assembly line. The perception system is necessary for taking into account the position uncertainty that arises from the vehicles being transported in an aerial conveyor. Three sensors with different working principles were compared, namely laser triangulation (SICK TriSpector1030), structured light with sequential stripe patterns (Photoneo PhoXi S) and structured light with infrared speckle pattern (Asus Xtion Pro Live). The accuracy of the sensors was measured by computing the root mean square error (RMSE) of the point cloud registrations between their scans and two types of reference point clouds, namely, CAD files and 3D sensor scans. Overall, the RMSE was lower when using sensor scans, with the SICK TriSpector1030 achieving the best results (0.25 mm ± 0.03 mm), the Photoneo PhoXi S having the intermediate performance (0.49 mm ± 0.14 mm) and the Asus Xtion Pro Live obtaining the higher RMSE (1.01 mm ± 0.11 mm). Considering the use case requirements, the final machine vision system relied on the SICK TriSpector1030 sensor and was integrated with a collaborative robot, which was successfully deployed in an vehicle assembly line, achieving 94% success in 53,400 screwing operations.

12.
ACS Appl Eng Mater ; 1(5): 1416-1425, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37256018

RESUMO

The development of sustainable functional materials with strong potential to be applied in different areas has been growing and gaining increasing interest to address the environmental impact of current materials and technologies. In this scope, this work reports on sustainable functional materials with electrochromic properties, based on their increasing interest for a variety of applications, including sensing technologies. The materials have been developed based on a natural derived polymer, carrageenan, in which different amounts of the ionic liquid (IL) 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) were blended. It is shown that the addition of different amounts of IL to the carrageenan matrix does not affect the properties of the samples in terms of morphology or physicochemical and thermal properties, the most significant difference being the increase of the ionic conductivity with increasing IL content, ranging from 2.3 × 10-11 S·cm-1 for pristine carrageenan to 4.6 × 10-4 S·cm-1 for the samples with 5 and 60 wt % IL content, respectively. A electrochromic device has been developed based on the different IL/carrageenan samples as electrolyte and poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as electrodes. Spectroelectrochemistry testing demonstrates functional devices at low voltages between 0.3 and -0.9 V. Among the different samples, the one with 15 wt % IL content presents the best conditions for application, presenting an oxidation time of 6 s, a reduction time of 8 s, and a charge density of 1150 and 1050 µC·cm-2 for oxidation and reduction, respectively. The same sample also presents excellent optical density as a function of load density, presenting an optical switch (Δ%Tx) of 99%. Thus, it is demonstrated that it is possible to develop high efficiency and sustainable electrochromic devices based on natural polymers and ionic liquids.

13.
ACS Sustain Chem Eng ; 11(15): 5986-5998, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091126

RESUMO

Considering the sustainable development goals to reduce environmental impact, sustainable sensors based on natural polymers are a priority as the large im plementation of these materials is required considering the Internet of Things (IoT) paradigm. In this context, the present work reports on sustainable blends based on collagen and different ionic liquids (ILs), including ([Ch][DHP], [Ch][TSI], [Ch][Seri]) and ([Emim][TFSI]), processed with varying contents and types of ILs in order to tailor the electrical response. Varying IL types and contents leads to different interactions with the collagen polymer matrix and, therefore, to varying mechanical, thermal, and electrical properties. Collagen/[Ch][Seri] samples display the most pronounced decrease of the tensile strength (3.2 ± 0.4 MPa) and an increase of the elongation at break (50.6 ± 1.5%). The best ionic conductivity value of 0.023 mS cm-1 has been obtained for the sample with 40 wt % of the IL [Ch][Seri]. The functional response of the collagen-IL films has been demonstrated on a resistive touch sensor whose response depends on the ionic conductivity, being suitable for the next generation of sustainable touch sensing devices.

14.
Int J Biol Macromol ; 227: 1070-1077, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464184

RESUMO

Chitosan-pectin films with iron oxide (Fe3O4) magnetic nanoparticles were prepared by solution casting in order to produce biopolymer based magnetically active materials. Infrared (FTIR) spectra indicated physical interactions between the matrix and nanoparticles, corroborated by differential scanning calorimetry (DSC) results. In addition, thermal characterization suggested that the interactions between chitosan, pectin and the nanoparticles resulted in a less compact structure, influencing the film mechanical properties. Regarding vibrating-sample magnetometry (VSM) and electrical analysis, chitosan-pectin films with Fe3O4 nanoparticles showed ferrimagnetic behavior, with an increase of the dielectric constant as the nanoparticle concentration increased. Furthermore, films displayed enhanced antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) bacteria. Therefore, chitosan-pectin films with Fe3O4 magnetic nanoparticles provide promising results for active and intelligent food packaging applications.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas , Pectinas/química , Quitosana/farmacologia , Quitosana/química , Nanopartículas/química , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
15.
ACS Appl Polym Mater ; 4(8): 5909-5919, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36568737

RESUMO

Solid polymer electrolytes (SPEs) are required to improve battery safety through the elimination of the liquid electrolyte solution in current batteries. This work is focused on the development of a hybrid SPE based on poly(vinylidene fluoride), PVDF, and 1-butyl-3-methylimidazolium cobalt(II) isothiocyanate, [BMIM]2[(SCN)4Co] magnetic ionic liquid (MIL), and its battery cycling behavior at room temperature. The addition of MIL in filler contents up to 40 wt % to the PVDF matrix does not influence the compact morphology of the samples obtained by solvent casting. The polar ß-phase of PVDF increases with increasing MIL content, whereas the degree of crystallinity, thermal degradation temperature, and mechanical properties of the MIL/PVDF blends decrease with increasing MIL content. The ionic conductivity of the MIL/PVDF blends increases both with temperature and MIL content, showing the highest ionic conductivity of 7 × 10-4 mS cm-1 at room temperature for the MIL/PVDF blend with 40 wt % of MIL. The cathodic half-cells prepared with this blend as SPE show good reversibility and excellent cycling behavior at different C-rates, with a discharge capacity of 80 mAh g-1 at a C/10-rate with a Coulombic efficiency of 99%. The developed magnetic SPE, with excellent performance at room temperature, shows potential for the implementation of sustainable lithium-ion batteries, which can be further tuned by the application of an external magnetic field.

16.
Gels ; 8(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286181

RESUMO

Mesenchymal stem cells (MSCs) osteogenic commitment before injection enhances bone regeneration therapy results. Piezoelectric stimulation may be an effective cue to promote MSCs pre-differentiation, and poly(vinylidene) fluoride (PVDF) cell culture supports, when combined with CoFe2O4 (CFO), offer a wireless in vitro stimulation strategy. Under an external magnetic field, CFO shift and magnetostriction deform the polymer matrix varying the polymer surface charge due to the piezoelectric effect. To test the effect of piezoelectric stimulation on MSCs, our approach is based on a gelatin hydrogel with embedded MSCs and PVDF-CFO electroactive microspheres. Microspheres were produced by electrospray technique, favouring CFO incorporation, crystallisation in ß-phase (85%) and a crystallinity degree of around 55%. The absence of cytotoxicity of the 3D construct was confirmed 24 h after cell encapsulation. Cells were viable, evenly distributed in the hydrogel matrix and surrounded by microspheres, allowing local stimulation. Hydrogels were stimulated using a magnetic bioreactor, and no significant changes were observed in MSCs proliferation in the short or long term. Nevertheless, piezoelectric stimulation upregulated RUNX2 expression after 7 days, indicating the activation of the osteogenic differentiation pathway. These results open the door for optimising a stimulation protocol allowing the application of the magnetically activated 3D electroactive cell culture support for MSCs pre-differentiation before transplantation.

17.
Front Chem ; 10: 995063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186579

RESUMO

This review focuses on the combination of metal-organic frameworks (MOFs) and ionic liquids (ILs) to obtain composite materials to be used as solid electrolytes in metal-ion battery applications. Benefiting from the controllable chemical composition, tunable pore structure and surface functionality, MOFs offer great opportunities for synthesizing high-performance electrolytes. Moreover, the encapsulation of ILs into porous materials can provide environmentally benign solid-state electrolytes for electrochemical devices. Due to the versatility of MOF-based materials, in this review we also explore their use as anodes and cathodes in Li- and Na-ion batteries. Finally, solid IL@MOF electrolytes and their implementation into Li and Na batteries have been analyzed, as well as the design and advanced manufacturing of solid IL@MOF electrolytes embedded on polymeric matrices.

18.
ACS Omega ; 7(17): 14457-14464, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35572743

RESUMO

Lithium-ion batteries (LIBs) are the most widely used energy storage system because of their high energy density and power, robustness, and reversibility, but they typically include an electrolyte solution composed of flammable organic solvents, leading to safety risks and reliability concerns for high-energy-density batteries. A step forward in Li-ion technology is the development of solid-state batteries suitable in terms of energy density and safety for the next generation of smart, safe, and high-performance batteries. Solid-state batteries can be developed on the basis of a solid polymer electrolyte (SPE) that may rely on natural polymers in order to replace synthetic ones, thereby taking into account environmental concerns. This work provides a perspective on current state-of-the-art sustainable SPEs for lithium-ion batteries. The recent developments are presented with a focus on natural polymers and their relevant properties in the context of battery applications. In addition, the ionic conductivity values and battery performance of natural polymer-based SPEs are reported, and it is shown that sustainable SPEs can become essential components of a next generation of high-performance solid-state batteries synergistically focused on performance, sustainability, and circular economy considerations.

19.
ACS Appl Mater Interfaces ; 14(13): 15494-15503, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324148

RESUMO

Materials sustainability is becoming increasingly relevant in every developed technology and, consequently, environmentally friendly solid polymer electrolytes (SPEs) based on gellan gum and different quantities of ionic liquid (IL) 1-ethyl-3-methyl-imidazolium-thiocyanate [Emim][SCN] have been prepared and applied in electrochromic devices (ECDs). The addition of the IL does not affect the crystalline phase of gellan gum, and the samples show a compact morphology, surface uniformity, no phase separation, and good distribution of the IL within the carrageenan matrix. The developed SPE are thermally stable up to ∼100 °C and show suitable mechanical properties. The most concentrated sample (39 wt % IL content) reaches a maximum ionic conductivity value of 6.0 × 10-3 S cm-1 and 1.8 × 10-2 S cm-1 at 30 and 90 °C, respectively. The electrochromic device (ECD) was fabricated with poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as working electrode and the developed SPE was compared with an aqueous 0.1 M KNO3 solution. The electrochromic performance of the electrolyte was assessed in terms of spectroelectrochemistry, demonstrating a fully flexible ECD operating at voltages below 1.0 V. This novel electrolyte opens the door to the preparation of high performance sustainable ECD.

20.
ACS Appl Mater Interfaces ; 13(41): 48889-48900, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34636238

RESUMO

The demand for more efficient energy storage devices has led to the exponential growth of lithium-ion batteries. To overcome the limitations of these systems in terms of safety and to reduce environmental impact, solid-state technology emerges as a suitable approach. This work reports on a three-component solid polymer electrolyte system based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), the ionic liquid 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]), and clinoptilolite zeolite (CPT). The influences of the preparation method and of the dopants on the electrolyte stability, ionic conductivity, and battery performance were studied. The developed electrolytes show an improved room temperature ionic conductivity (1.9 × 10-4 S cm-1), thermal stability (up to 300 °C), and mechanical stability. The corresponding batteries exhibit an outstanding room temperature performance of 160.3 mAh g-1 at a C/15-rate, with a capacity retention of 76% after 50 cycles. These results represent a step forward in a promising technology aiming the widespread implementation of solid-state batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...